- 首頁
- >
- 書籍詳目頁
- 作者: 洪錦魁 (著)
- 學科分類: 科學類
- 書籍分類: 其他
- 出版社: 深智數位股份有限公司
- 出版地:臺灣
- 出版日期:2023
- 語文:繁體中文
- ISBN/識別號:9786267273784
- DOI: 10.978.6267273/784
機器學習最強入門:基礎數學/機率/統計邁向AI真實數據專題實作-王者歸來
可使用:0人
線上閱讀中:0人
下載閱讀中:0人
借閱天數:0天

推薦採購不提供QR CODE
線上閱讀
本書提供兩種檔案格式,請選擇開啟:
EPUB彈性排版,可依載具大小自動斷行或換頁,較適合小螢幕閱讀。
書籍內容
TOP
機器學習最強入門
基礎數學/機率/統計
邁向
AI真實數據 x 專題實作
★★★★★【數學原理 + 演算法 + 真實案例+ 專題實作】★★★★★
★★★★★【最簡明的數學、機率、統計知識】★★★★★
★★★★★【最完整的機器學習演算法】★★★★★
★★★★★【最豐富的真實數據 x 專題實作】★★★★★
本書特色如下:
★ 最白話解釋數學原理
☆ 從簡單的數據開始理解機器學習的演算法
★ 將理論知識轉化為實際的程式碼
☆ 實際案例分析
全書有約416個Python程式實例,讀者可以由本書內容,了解下列與機器學習有關的基礎數學、機率、統計知識:
★ 方程式與函數
☆ 完整Python語法
★ 一元函數到多元函數
☆ 最小平方法
★ 基礎統計
☆ 機率與單純貝式理論
★ 指數與對數
☆ logit函數與logistic函數
★ 向量與矩陣
☆ 二次函數、三次函數與多項式函數
當讀者有了上述知識後,筆者從簡單的實例開始介紹下列機器學習的演算法,每一種演算法皆是從基礎數據開始解說,然後跨入真實數據,解說應該如何將演算法應用到真實案例環境:
★ 線性迴歸 – 波士頓房價
☆ 邏輯迴歸 – 信用卡/葡萄酒/糖尿病
★ 決策樹 – 葡萄酒/鐵達尼號/Telco/Retail
☆ 隨機森林樹 – 波士頓房價/鐵達尼號/Telco/收入分析
★ KNN演算法 – 電影推薦/足球射門/鳶尾花/小行星撞地球
☆ 支援向量機 – 鳶尾花/乳癌/汽車燃料
★ 單純貝式分類 – 垃圾郵件/中英文的新聞分類/情感分析/電影評論
☆ 集成機器學習 – 蘑菇/醫療保險/玻璃/加州房價
★ K-means分群 – 購物中心消費/葡萄酒評價
☆ PCA主成分分析 – 手寫數字/人臉數據
★ 階層式分群 – 小麥數據/老實泉
☆ DBSCAN演算法 – 購物中心客戶分析
在講解上述演算法時,筆者同時介紹下列機器學習應該知道的知識:
★ 特徵選擇
☆ 用直方圖了解特徵分佈
★ 用箱型圖了解異常值
☆ 數據預處理
★ 殘差圖(Residual plot)
☆ 機器學習性能評估
★ 過擬合(overfitting)
☆ 欠擬合(underfitting)
★ 數據洩漏(Data leakage)
☆ 繪製決策樹圖(Decision tree map)
★ 可視化熱力圖(Heat map)
☆ 決策邊界(Decision Boundary)
★ 增加數據維度與超平面
☆ 交叉驗證(Cross-validation)
★ 泛化能力(Generalization Ability)
☆ 弱學習器(Weaks learners)
★ 強學習器(Strong learners)
☆ 學習模型(base learner)
本書最後一章,介紹了熱門的AI主題「語音辨識」,從本章內容讀者可以學會下列知識:
★ 語音轉文字
☆ 文字轉語音
※ 本書所有程式實例可至深智官網下載:deepwisdom.com.tw
基礎數學/機率/統計
邁向
AI真實數據 x 專題實作
★★★★★【數學原理 + 演算法 + 真實案例+ 專題實作】★★★★★
★★★★★【最簡明的數學、機率、統計知識】★★★★★
★★★★★【最完整的機器學習演算法】★★★★★
★★★★★【最豐富的真實數據 x 專題實作】★★★★★
本書特色如下:
★ 最白話解釋數學原理
☆ 從簡單的數據開始理解機器學習的演算法
★ 將理論知識轉化為實際的程式碼
☆ 實際案例分析
全書有約416個Python程式實例,讀者可以由本書內容,了解下列與機器學習有關的基礎數學、機率、統計知識:
★ 方程式與函數
☆ 完整Python語法
★ 一元函數到多元函數
☆ 最小平方法
★ 基礎統計
☆ 機率與單純貝式理論
★ 指數與對數
☆ logit函數與logistic函數
★ 向量與矩陣
☆ 二次函數、三次函數與多項式函數
當讀者有了上述知識後,筆者從簡單的實例開始介紹下列機器學習的演算法,每一種演算法皆是從基礎數據開始解說,然後跨入真實數據,解說應該如何將演算法應用到真實案例環境:
★ 線性迴歸 – 波士頓房價
☆ 邏輯迴歸 – 信用卡/葡萄酒/糖尿病
★ 決策樹 – 葡萄酒/鐵達尼號/Telco/Retail
☆ 隨機森林樹 – 波士頓房價/鐵達尼號/Telco/收入分析
★ KNN演算法 – 電影推薦/足球射門/鳶尾花/小行星撞地球
☆ 支援向量機 – 鳶尾花/乳癌/汽車燃料
★ 單純貝式分類 – 垃圾郵件/中英文的新聞分類/情感分析/電影評論
☆ 集成機器學習 – 蘑菇/醫療保險/玻璃/加州房價
★ K-means分群 – 購物中心消費/葡萄酒評價
☆ PCA主成分分析 – 手寫數字/人臉數據
★ 階層式分群 – 小麥數據/老實泉
☆ DBSCAN演算法 – 購物中心客戶分析
在講解上述演算法時,筆者同時介紹下列機器學習應該知道的知識:
★ 特徵選擇
☆ 用直方圖了解特徵分佈
★ 用箱型圖了解異常值
☆ 數據預處理
★ 殘差圖(Residual plot)
☆ 機器學習性能評估
★ 過擬合(overfitting)
☆ 欠擬合(underfitting)
★ 數據洩漏(Data leakage)
☆ 繪製決策樹圖(Decision tree map)
★ 可視化熱力圖(Heat map)
☆ 決策邊界(Decision Boundary)
★ 增加數據維度與超平面
☆ 交叉驗證(Cross-validation)
★ 泛化能力(Generalization Ability)
☆ 弱學習器(Weaks learners)
★ 強學習器(Strong learners)
☆ 學習模型(base learner)
本書最後一章,介紹了熱門的AI主題「語音辨識」,從本章內容讀者可以學會下列知識:
★ 語音轉文字
☆ 文字轉語音
※ 本書所有程式實例可至深智官網下載:deepwisdom.com.tw
- 目錄
-
第1章 機器學習基本觀念
-
第2章 機器學習的基礎數學
-
第3章 認識方程式/函數/座標圖形
-
第4章 從聯立方程式看機器學習的數學模型
-
第5章 從畢氏定理看機器學習
-
第6章 聯立不等式與機器學習
-
第7章 機器學習需要知道的二次函數
-
第8章 機器學習的最小平方法
-
第9章 機器學習必須懂的集合
-
第10章 機器學習必須懂的排列與組合
-
第11章 機器學習需要認識的機率
-
第12章 二項式定理
-
第13章 指數觀念與指數函數
-
第14章 對數(logarithm)
-
第15章 歐拉數與邏輯函數
-
第16章 三角函數
-
第17章 基礎統計與大型運算子
-
第18章 機器學習的向量
-
第19章 機器學習的矩陣
-
第20章 向量、矩陣與多元線性迴歸
-
第21章 三次函數迴歸曲線的程式實作
-
第22章 機器學習使用scikit-learn入門
-
第23章 線性迴歸-波士頓房價
-
第24章 邏輯迴歸-信用卡/葡萄酒/糖尿病
-
第25章 決策樹-葡萄酒/鐵達尼號/Telco/Retail
-
第26章 隨機森林樹-波士頓房價/鐵達尼號/Telco/收入分析
-
第27章 KNN演算法/鳶尾花/小行星撞地球
-
第28章 支援向量機-鳶尾花/乳癌/汽車燃料
-
第29章 單純貝式分類-垃圾郵件/新聞分類/電影評論
-
第30章 集成機器學習-蘑菇/醫療保險/玻璃/加州房價
-
第31章 K-means分群-購物中心消費/葡萄酒評價
-
第32章 PCA主成份分析–手寫數字/人臉數據
-
第33章 階層式分層-小麥數據/老實泉
-
第34章 DBSCAN演算法-購物中心客戶分析
-
第35章 語音辨識
-
附錄A 函數與方法索引表
-
附錄B 電子書-本書程式實例彩色執行結果圖表